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Transition zone in controlling spatiotemporal chaos
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The controllability of spatiotemporal chaos is investigated. Contrary to our common sense that there is only
one transition point (i.e., a critical control strength) for successful control, we find that actually a transition
zone exists, connecting two transition points for the local and global stabilities of the controlled state, respec-
tively. Within the zone, the controllable probability increases from zero to one for random initial conditions.
This behavior is found to be very generic and is expected to have a severe consequence in realistic applications

in the control of spatiotemporal chaos.

DOIL: 10.1103/PhysRevE.79.056214

Chaos control has become one of central problems in the
field of nonlinear science [1]. Spatiotemporal systems [2-4]
have multiple spatial degrees of freedom and could present
complex oscillations and rich patterns, which naturally ap-
pear in electronic circuits, optical, plasmas, chemical, and
biological systems as well. Therefore, the control of spa-
tiotemporal chaos with the aim to drive the controlled system
to our target state closely connects to realistic applications
and is certainly of great significance. So far, various control
approaches such as the local pinning control [5,6], the time-
delay feedback control [7], the adaptive method [8], and the
forcing in Fourier space [9] and in wavelet subspace [10]
have been proposed in order to realize a successful control
and achieve a high efficiency. On the other hand, an impor-
tant problem of controllability of spatiotemporal chaos has
also been theoretically studied recently [11-15]. It is found
that in a certain spatiotemporal system (e.g., the flow turbu-
lent system in incompressible Navier-Stokes equations), the
whole velocity field can only be partially controlled through
the pinning control of one component of the velocity field
even in the limit of long control time and strong control
strength [13,14]. In this work, we will address another rel-
evant problem about the controllability of spatiotemporal
chaos: the impact of initial conditions. One may intuitively
believe that to realize control, a threshold with a sufficiently
large control strength (denoted by &, with & representing our
control parameter) is needed; namely, only if e>¢,, a con-
trol can succeed, and otherwise it cannot. Thus, a dichotomy
of control parameter is generally expected. Our study, how-
ever, surprisingly shows that a transition zone staying at a
finite width of control parameter exists, which connects two
critical parameters for uncontrollability and full controllabil-
ity for random initial conditions. The phenomenon appears
due to the intrinsic character of spatiotemporal chaotic states,
the spatiotemporal complexity.

Consider the following one-dimensional (1D) complex
Ginzburg-Landau equation (CGLE):
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A=A+ (1 +ic)PA - (1+ic,)|Al’A, (1)

where A=A(x,1) is complex variables and ¢, and c, are the
real system parameters. Equation (1) describes the general
characteristics at the onset of a Hopf bifurcation of spa-
tiotemporal systems and is the most studied model of spa-
tiotemporal chaos. If the periodic boundary condition is im-
posed, system (1) admits the following traveling wave
solutions:

Alx,1) = Age w0 (2

where Ag=\1-k%, w=cy+(c,—c)k% and k=27 with L
representing the system size and m being an integer. 6 is a
constant phase (without losing generality, we set 6=0).
These solutions are linearly stable against long-wavelength

perturbations if

1+C1C2

3)

22 _
s ki= 2(1 +c§)+ 1+ccp
holds [2,16]. Thus if 1+c¢;c,<O [the so-called Benjamin-
Feir (BF) unstable region], all plane-wave solutions [Eq. (2)]
are unstable, and the system exhibits various spatiotemporal
chaotic behaviors including defect turbulence (DT) and
phase turbulence (PT). DT is characterized by the behavior
that the fluctuations of amplitude become dominant over the
phase dynamics, and PT is opposite.

We perform a global control approach by injecting a pe-
riodic signal into the original system, and hence we modify
Eq. (1) to the controlled form

GA=A+(1+ic)PA-(1+ic)APA+e(A—-A), (4)

where ¢ is the feedback control intensity and A is the target
signal chosen from one of the periodic traveling waves of
Eq. (2). Similar techniques have been used in the control of
the CGLE in one, two, and three dimensions. See, e.g., Refs.
[17-19] and numerous others. Without losing generality, we
choose m=2 as the target state throughout this paper; clearly
the study can be extended to other choice of m. It is notable

that A=A is already a solution of system [Eq. (4)], and the
effect of control simply changes the stability of the
solution—from unstable to stable. Also note that now the
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control intensity € is the only control parameter.

To study the stability of the solution A=A, in what fol-
lows we conduct the linear stability analysis. We consider the
system variable has a small deviation from the target signal
and therefore has the form A=Ag[1+a(x,)]etvrewnl in
which a(x,7) and ¢(x,7) are the small deviations from the
amplitude and phase of the target state. Inserting the above
system variable into Eq. (4) and considering |a|<1 and
|o| <1, we obtain

a,=a,, —2kcia,—2(1 —k*)a—-c,@,, — 2ke, — £a,

Pr=Ciayt 2kax - 262(1 - kz)a + @ — 2kC1ng —€0, (5)

where a,=da, a,=d.a, axx=c7)2(a, and ¢, ¢,, ¢, have the
similar forms. The eigenfunction of Eq. (5) can be written as

(a ) — (ao )e(m‘ﬂ'px)’ (6)
¢ Po

where o is complex and the wave number of the perturbation
p=2mT7T is real (m’ is an integer). Considering Eq. (5), we

have

1 1
0'=§(F11+F22)+EV(Fll—F22)2+4F12F21, (7)

with

Fiy=—p>=i2kc,p-2(1-k%) —¢,
Fip=cip* = i2kp,
Fyy=—c\p*+i2kp — 2c,(1 = k),

F22=—p2—i2kclp—8.

Denote A=Re(o) and 0=Im(o) with Re and Im representing
the real and imaginary parts of variable, respectively.
o=A+i{). Obviously the sign of N determines the stability of
the controlled state; namely, if N is positive, the small devia-
tion will explode with time; but oppositely if N\ is negative, it
will shrink. Observing Eq. (7), we find that \ linearly de-
creases with & (i.e., Aoc—g) and () is independent of &. The
value of N\ depends on the system parameters c¢; and c,, the

2mm

wave number k of the target (k==" with m=2), which is

fixed in the controlling, and the wave number p of the per-
turbation (p:# .

In Fig. 1(a), we show the relation between N and & for
different m’ by numerically calculating N in Eq. (7). For
specificity, we choose the system parameters c;=2.1 and
¢,=—1.5 (within the DT regime). L=100. For each m’', there
is a critical value e.m’), corresponding to the & at the
crossing-zero N\ position of the e—A\ straight line. Obviously,
the maximum value of e.(m’) could theoretically guarantee
the stability of the target state against any small perturba-
tions. Figure 1(b) exhibits the dependence of e.(m') on m’,
which well indicates that the m’'=9 mode is the most un-
stable mode and its corresponding &.(e.~0.29) should be
the critical control parameter.

Below let us test this theoretical prediction by numerical
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FIG. 1. (Color online) (a) The dependence of \ on & for differ-
ent m'. m'=1, 5,9, and 12, for illustration. (b) The dependence of
the critical strength e.(m’) on m’. ¢;=2.1, ¢,=-1.5, L=100, and
m=2.

simulations. We integrated the controlled CGLE [Eq. (4)]
directly with random initial conditions of A [both Re(A) and
Im(A) are chosen within (—1,1)] and checked the computa-
tional stability by adjusting space iterations and time steps.
The system evolves from f=—1000 and the control is
switched on at r=50. The control probability versus & is
shown in Fig. 2(a). Interestingly, we find that the control
results are actually sensitively influenced by different initial
conditions, and the system is not always controllable even if
&> ¢g,.. With increasing &, the controllable probability mono-
tonically increases, and the system can always be controlled
if & is larger than the other critical strength (£ =0.53). As a
result, for different initial conditions, a transition zone (not a
single transition point) appears, starting from one threshold
for the local stability and ending at the other one for the
global stability. In the paper, we denote these two thresholds
with g,(g,=¢,) and &,, respectively.

To quantify the control effects and show the average dis-
tance between the system variable and the target state, we
define a function
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FIG. 2. (a), (c), and (d) The appearance probabilities for differ-
ent random initial conditions for the states 0, 1, and 2, respectively.
For the controllable state in (a), a transition zone appears, connect-
ing two transition points &; (e,=¢_,) and &, for the local and global
stability parameters, respectively. (b) The plot of P vs &, showing
multiple values within &; <& <g,. See the text for more details.
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with A(x,1)=A(x,1)—A(x,1) indicating the instant difference.
If the system is completely controlled, P drops to zero (or
nearly zero), and otherwise P remains a large value. Figure
2(b) shows P versus €. In numerics, a very large AT has been
chosen and larger AT does not change the result. We notice
that the patterns within the region € € [&;, &,] are rather com-
plicated, clearly with different groups of P values. We may
denote these different behaviors with different numbers, as
shown the numbers 0, 1, 2 in Fig. 2(b). Clearly the number 0
represents the controllable state, and the numbers 1 and 2
represent the uncontrollable states. Numerically we set
P<0.1 as the “0” state, 0.1<<P<<0.5 as the “1” state, and
P>0.5 as the “2” state. Their corresponding probability dis-
tributions for the states 1 and 2 are illustrated in Figs. 2(c)
and 2(d), respectively.

To study the details of these three states, we plot the time
evolutions of P,(P,=1 [} |A(x,1)|dx), Re A, (5 denotes the
middle point of the pattern), and the patterns of Re A in the
three rows of Fig. 3, respectively. The three columns
of Fig. 3 correspond to these three states, respectively,
£=0.42(g,<e<e,). Different from the state 0 with the dif-
ference vanishing after a short time, for the state 1, the sys-
tem can be occasionally synchronized with the target state
but shows short deviations intermittently. As a whole, it pro-
duces a finite average value P [Fig. 2(b)]. Roughly this in-
termittent behavior is periodic, which is obvious from all
three panels of the second column. As shown in Fig. 3(h), the
straight drifting of one difference zone makes the intermit-
tent phenomenon globally and periodically exist and so the
whole system uncontrollable. More detailed study shows that
this intermittency is induced by the remaining defect point
within the difference zones, and locally it is not completely
periodic due to the existence of defect point. Thus we may
call it defect-induced intermittency. To the best knowledge of
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ours, this defect-induced intermittency with a roughly peri-
odic behavior has never been addressed before. For the state
2, clearly there are two difference zones [Fig. 3(i)] with the
same drifting velocity, which naturally make the value of P
larger. For much larger P [e.g., the scattered data at about
£=0.47 in Fig. 2(b)], more complicated patterns are possible.

To show the robustness and generality of this effect, next
we select one identical initial state, which has well evolved
to a defect turbulent state, set different 6 from O to 27 in Eq.
(2) as our target state and recalculate P. This manipulation
will not change the result of stability analysis but will con-
veniently show the sensitivity of initial conditions. The result
is shown in Fig. 4 with the recovered three values for the
controllable O state and two uncontrollable 1 and 2 states.
The seemly random distribution of P on 6 clearly shows that
the control effect is highly sensitive on the set of initial con-
ditions, which thus can be believed to be unavoidable in any
control of spatiotemporal chaos. For other initial conditions,
the result is qualitatively unchanged. We have also investi-
gated the effect of system size and found that if the system
size is sufficiently large (e.g., L=100 used in the paper), the
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FIG. 4. The plot of P vs 6, showing the sensitivity of control
effects on initial conditions.
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FIG. 5. (Color online) The plots of &; and &, as a function of the
system parameter ¢,. ¢;=2.1. The letters “DT”" and “PT” denote the
defect turbulent and phase turbulent regions, respectively. The be-
havior of transition zone can be generally observed in a very broad
parameter range, as shown the gray part within the defect turbulent
regime in the picture.

values of &; and &, (and the location of transition zone) are
nearly unchanged with different L. In addition, we have stud-
ied the impact of system parameters. This time the parameter
c1=2.1is fixed and ¢, is scanned from -3 to 0. According to
the previous studies on the 1D CGLE [4,20,21], at the pa-
rameter ¢, ~—0.9(c,;=2.1), the DT will transit to PT. We find
that the behavior of transition zone persists within the whole
DT parameter region (Fig. 5). This finding suggests that we
always need a much larger driving strength to realize a con-
trol for random initial conditions or several additional times
of test if the control parameter is within the transition zone.
Again the first critical parameter £; from numerical simula-
tions (squares) is identical to the theoretically predicted
value from the linear stability analysis e, (solid red line).
After the DT-PT transition point, the two values of &; and &,

PHYSICAL REVIEW E 79, 056214 (2009)

begin to coincide and the usual one transition point behavior
survives. This can be intuitively understood. As now within
the PT region, the condition for the occurrence of the defect-
induced intermittency does not exist; a long observation time
can always make the target state, which is locally stable, be
globally stable, and thus the collapsing of a transition zone
with two separate transition points to a transition point. Note
that around the BF critical parameter (c,~-0.48), we find
that a finite critical control strength is needed again. Never-
theless, it is not interesting from the chaos control point of
view.

In conclusion, we have studied the controllability of spa-
tiotemporal chaos (particularly the defect turbulent chaos)
both theoretically and numerically, uncovered an unusual ef-
fect of initial conditions, and discovered a dynamical phe-
nomenon, the defect-induced intermittency, in the control.
Interestingly, the controllability of spatially extended sys-
tems is found to be a probability event for different initial
conditions, and it shows that the controllability is harder to
achieve than what is expected previously. Due to the occur-
rence of the defect-induced quasiperiodic intermittency,
which can be believed as attractor of systems in some way,
the controlled system can keep uncontrollable for any long
time. As we cannot always set the initial conditions being
extremely close to the target state, and in some circumstance
we even do not know the exact information of the target
state, we have to carefully consider this effect in any realistic
applications of controlling spatiotemporal chaos. Finally, we
hope that all these results are observable and applicable to
other spatiotemporal systems and control methods.
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